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Abstract
Suppose we are given an entangled pair and asked how well we can produce two
entangled pairs starting from a given entangled pair using only local operations.
To respond to this question, we study broadcasting of entanglement using a
state-dependent quantum cloning machine as a local copier. We show that the
length of the interval for probability-amplitude-squared α2 for broadcasting of
entanglement using a state-dependent cloner can be made larger than the length
of the interval for probability-amplitude-squared for broadcasting entanglement
using a state-independent cloner. Further we show that there exists a local state-
dependent cloner which gives better quality copy (in terms of average fidelity)
of an entangled pair than the local universal cloner.

PACS numbers: 03.67.−a, 03.65.Bz, 89.70.+c

1. Introduction

Linearity of quantum theory prevents us from duplicating and deleting an unknown quantum
state. Its consequence is the no-cloning theorem [1] and no-deletion theorem [15], which
state that an ideal quantum copying machine and perfect quantum deleting machine do not
exist. Although nature prevents us from amplifying an unknown quantum state, we can
construct a quantum cloning machine that duplicates an unknown quantum state approximately
[1–5]. Quantum copying machines can be divided into two classes: (a) deterministic
quantum copying machines and (b) probabilistic quantum copying machines. The first type
of quantum cloning machine can be further divided into two sub-classes: (i) state-dependent
quantum cloning machines, for example, Wootters–Zurek (W–Z) quantum cloning machine
[1], whose copying quality depends on the input state. (ii) Universal quantum copying
machines, for example, Buzek–Hillery (B–H) quantum cloning machine [2], whose copying
quality remains the same for all input states. In addition, the performance of the universal
B–H quantum cloning machine is, on average, better than that of the state-dependent W–Z
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cloning machine. The fidelity of cloning of the B–H universal quantum copying machine is
5/6 which is better than any other existing universal quantum cloning machine. The latter
type of quantum cloner i.e. the probabilistic quantum cloning machine clones an unknown
quantum state, secretly chosen from a certain set of linearly independent states, accurately but
with certain probabilities less than unity [16].

Entanglement [14] is a quantum mechanical feature that can be employed for
computational and communicational purposes. Therefore, as a valuable resource in quantum
information processing, quantum entanglement has been widely used in quantum cryptography
[10, 13], quantum superdense coding [11] and quantum teleportation [12]. Consequently,
it remains the subject of interest at present after years of investigations. Among all the
problems regarding entanglement, broadcasting of entanglement is an important issue to
consider. Broadcasting is nothing but a local copying of non-local quantum correlations.
In this process, the entanglement originally shared by two observers is broadcast into two
identical less-entangled states by using a local 1 → 2 optimal universal symmetric cloning
machine.

1.1. Definition

Suppose two distant parties A and B share two qubit-entangled states

|s〉AB = α|00〉AB + β|11〉AB with α2 + |β|2 = 1.

The first qubit belongs to A and the second belongs to B. Each of the two parties now performs
local copier on its own qubit and then the input-entangled state |ψ〉 has been broadcast if for
some values of the probability α2,

(1) non-local output states are inseparable, and
(2) local output states are separable.

The above-described process was used by Buzek et al [6] for broadcasting entanglement
using universal quantum cloning machine as a local copier. Broadcasting (cloning) of non-
local correlations of quantum states also studied by Bandyopadhyay et al [9] showed that
broadcasting of more than two pairs from a single pair is not possible using local copier. In
the process of broadcasting of entanglement, we generally use the Peres–Horodecki theorem
for showing the inseparability of non-local outputs and separability of local outputs.

1.2. Peres–Horodecki theorem [7, 8]

The necessary and sufficient condition for the state ρ̂ of two spins 1
2 to be inseparable is that

at least one of the eigenvalues of the partially transposed operator defined as ρT2
mµ,nν = ρmν,nµ

is negative. This is equivalent to the condition that at least one of the two determinants

W3 =
∣∣∣∣∣∣
ρ00,00 ρ01,00 ρ00,10

ρ00,01 ρ01,01 ρ00,11

ρ10,00 ρ11,00 ρ10,10

∣∣∣∣∣∣ and W4 =

∣∣∣∣∣∣∣∣

ρ00,00 ρ01,00 ρ00,10 ρ01,10

ρ00,01 ρ01,01 ρ00,11 ρ01,11

ρ10,00 ρ11,00 ρ10,10 ρ11,10

ρ10,01 ρ11,01 ρ10,11 ρ11,11

∣∣∣∣∣∣∣∣
is negative and

W2 =
∣∣∣∣ρ00,00 ρ01,00

ρ00,01 ρ01,01

∣∣∣∣
is non-negative.
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Now, we distribute our work to the remaining three sections. In section 2, we introduce a
state-dependent quantum-cloning machine, which we will use in the broadcasting process later.
In section 3, we revisit the broadcasting of entanglement procedure proposed by Buzek et al.
In section 4, we discuss the broadcasting of entanglement via state-dependent cloning machine
and show that broadcasting is possible in a wider range of the probability α2 compared with
the range of the probability for broadcasting of entanglement via universal cloning machine
as a local copier.

2. State-dependent B–H quantum cloning machine

In the literature, many state-dependent quantum cloners were known. In this section, we also
introduce another state-dependent cloner. The introduced state-dependent cloner is interesting
in the sense that it can be constructed from B–H quantum cloning transformation by relaxing
one condition of universality namely, ∂Dab/∂α2 = 0 where Dab = Tr

[
ρ

(out)
ab − ρ(id)

a ⊗ ρ
(id)
b

]2
.

ρ
(out)
ab describes the entangled output states of the cloner and ρ(id)

a , ρ
(id)
b describe the input state

in modes ‘a’ and ‘b’, respectively.
The B–H cloning transformation is given by

|0〉
∣∣∣∑

〉
|Q〉 → |0〉|0〉|Q0〉 + (|0〉|1〉 + |1〉|0〉)|Y0〉, (2.1)

|1〉
∣∣∣∑

〉
|Q〉 → |1〉|1〉|Q1〉 + (|0〉|1〉 + |1〉|0〉)|Y1〉. (2.2)

The unitarity of the transformation gives

〈Qi |Qi〉 + 2〈Yi |Yi〉 = 1, i = 0, 1, (2.3)

〈Y0|Y1〉 = 〈Y1|Y0〉 = 0. (2.4)

We assume

〈Q0|Y0〉 = 〈Q1|Y1〉 = 〈Q1|Q0〉 = 0. (2.5)

Let

|ψ〉 = α|0〉 + β|1〉 (2.6)

with α2 + |β|2 = 1 be the input state.
We assume α is real and β is complex.
The cloning transformations (2.1) and (2.2) copy the information of the input state (2.6)

approximately into two identical states described by the density operators ρ(out)
a and ρ

(out)
b ,

respectively.
The output state described by the density operator ρ

(out)
b looks the same as ρ(out)

a .
The reduced density operator ρ(out)

a is given by

ρ(out)
a = |0〉〈0|�α2 + (|β|2〈Y1|Y1〉 − α2〈Y0|Y0〉)� + |0〉〈1|αβ∗[〈Q1|Y0〉 + 〈Y1|Q0〉]

+ |1〉〈0|αβ[〈Q1|Y0〉 + 〈Y1|Q0〉] + |1〉〈1|[|β|2 − (|β|2〈Y1|Y1〉 − α2〈Y0|Y0〉)]
= |0〉〈0|[α2 + λ(|β|2 − α2)] + |0〉〈1|αβ∗µ + |1〉〈0|αβ µ + |1〉〈1|[|β|2 − λ(|β|2 − α2)],

(2.7)

where

〈Y0|Y0〉 = 〈Y1|Y1〉 = λ, (2.8)
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〈Q0|Y1〉 = 〈Q1|Y0〉 = 〈Y1|Q0〉 = 〈Y0|Q1〉 = µ/2. (2.9)

The distortion of the qubit in mode ‘a’ is

Da = 2λ2(4α4 − 4α2 + 1) + 2α2(1 − α2)(µ − 1)2. (2.10)

The distortion Dab is defined by

Dab = Tr
[
ρ

(out)
ab − ρ(id)

a ⊗ ρ
(id)
b

]2

= Tr


U11 U12 U13

U21 U22 U23

U31 U32 U33




2

= U 2
11 + 2|U12|2 + 2|U13|2 + U 2

22 + 2|U23|2 + U 2
33, (2.11)

where

U11 = α4 − α2(1 − 2λ), (2.12a)

U12 =
√

2α3β∗ −
√

2αβ∗µ/2, U21 = (U12)
∗, (2.12b)

U13 = α2(β∗)2, U31 = (U13) (2.12c)

U22 = 2α2|β|2 − 2λ, (2.12d)

U23 =
√

2αβ∗|β|2 −
√

2αβ∗µ/2, U32 = (U23)
∗, (2.12e)

U33 = |β|4 − |β|2(1 − 2λ). (2.12f )

The cloning transformations (2.1) and (2.2) are input state independent if Da and Dab are input
state independent. In this work, we are interested in input state-dependent cloning machine.
To make the cloning transformations (2.1) and (2.2) input state dependent, we assume Dab is
input state dependent i.e.

∂Dab/∂α2 	= 0. (2.13)

The relation between the machine parameters λ and µ is established by solving the
equation ∂Da/∂α2 = 0. Therefore,

∂Da/∂α2 = 0 ⇒ µ = 1 − 2λ. (2.14)

The value of the machine parameter λ is restricted from the condition ∂Dab/∂α2 	= 0. The
above condition (2.13) implies that λ can take any value between 0 and 1/2 except 1/6.
However, if λ = 1/6, then ∂Da/∂α2 = 0 and ∂Dab/∂α2 = 0, therefore the machine becomes
universal in the sense that it does not depend on the input state.

Putting µ = 1 − 2λ in (2.11) and (2.12a)–(2.12f ), we get

Dab = [α4 − α2(1 − 2λ)]2 + 4α2(1 − α2)(α2 − (1 − 2λ)/2)2 + 2α4(1 − α2)2

+ (2α2(1 − α2) − 2λ)2 + 4α2(1 − α2)(1 − α2 − (1 − 2λ)/2)2

+ (1 − α2)2(2λ − α2)2. (2.15)

For maximum or minimum value of Dab, we have

∂Dab/∂λ = 0 ⇒ λ = 3α2(1 − α2)/4. (2.16)

Again,

∂2Dab/∂λ2 = 16〉0. (2.17)
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Table 1. Comparison between B–H state dependent and independent cloner.

For state-dependent cloner For B–H state-independent cloner

Distance between Machine Distance between
Probability Machine parameter input and output parameter input and output
(α2) λ = 3α2(1 − α2)/4 states, Da = 2λ2 λ = 1/6 states, Da

0.1 0.007 0.000 098 0.167 0.055 556
0.2 0.029 0.001 682 0.167 0.055 556
0.3 0.061 0.007 442 0.167 0.055 556
0.4 0.101 0.020 402 0.167 0.055 556
0.5 0.141 0.039 762 0.167 0.055 556
0.6 0.173 0.059 858 0.167 0.055 556
0.7 0.187 0.069 938 0.167 0.055 556
0.8 0.173 0.059 858 0.167 0.055 556
0.9 0.115 0.026 450 0.167 0.055 556

Equation (2.17) implies that Dab has minimum value when the machine parameter λ takes the
form given in equation (2.16).

Thus we are able to construct a quantum-cloning machine where machine state vectors
depend on the input state and therefore the quality of the copy depends on the input state i.e.
for different input states, machine state vectors take different values and hence the quality of
the copy changes.

Putting µ = 1 − 2λ in (2.10), we get

Da(α
2) = 2λ2, (2.18)

since λ depends on α2.
Table 1 shows that the quality of the copy depends on the input state if we consider

the B–H state-dependent cloner while we can observe that the quality of the copy of B–H
state-independent cloner remains the same for all input states.

Finally we have constructed a state-dependent quantum-cloning machine that we use for
broadcasting of entanglement in section 4.

3. Revisit the broadcasting of entanglement

In this section, we revisit the broadcasting of entanglement procedure by Buzek et al.
Let the input-entangled state be given by

|φ〉 = α1|00〉AB + β1|11〉AB (3.1)

with real α1 and β1 and α2
1 + β2

1 = 1.
The state (3.1) is inseparable for all values of α2

1 such that 0 < α2
1 < 1 because one of the

two determinants W3 and W4 is negative and W2 is non-negative.
Using the state-independent universal B–H cloning machine as a local copier, the local

output described by the density operator is

ρAA′ = ρBB′ = 2α2
1

/
3|00〉〈00| + 1/3|+〉〈+| + 2β2

1

/
3|11〉〈11|, (3.2)

where |+〉 = (1/
√

2)(|01〉 + |10〉).
While the non-local output described by the density operator

ρAB′ = ρA′B = (
24α2

1 + 1
)/

36|00〉〈00| +
(
24β2

1 + 1
)/

36|11〉〈11|
+ 5/36(|01〉〈01| + |10〉〈10|)4α1β1/9(|00〉〈11| + |11〉〈00|). (3.3)
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From Peres–Horodecki criteria for separability, it follows that ρAA′(ρBB′) is separable if

1/2 −
√

48/16 � α2
1 � 1/2 +

√
48/16 (3.4)

and ρAB′(ρA′B) is inseparable if

1/2 −
√

39/16 � α2
1 � 1/2 +

√
39/16. (3.5)

Therefore, the entanglement is broadcasted via local state-independent quantum cloner if the
probability-amplitude-squared α2

1 is given by the range

1/2 −
√

39/16 � α2
1 � 1/2 +

√
39/16. (3.6)

The fidelity of broadcasting is given by

F1
(
α2

1

) = 〈φ|ρAB′ |φ〉 = 25/36 − 4α2
1

(
1 − α2

1

)/
9. (3.7)

From equation (3.7), we note that although the state-independent cloner is used as a local
cloner for broadcasting entanglement, we find that the fidelity of copying an entanglement
depends on the input state. Thus, the actions of state-independent cloner on the respective
particles hold by two distant parties locally do not clone the entanglement equally for all values
of the probability α2

1.
Hence, the average fidelity is given by

F̄ 1 =
∫ 1

0
F1

(
α2

1

)
dα2

1 = 67/108 = 0.62. (3.8)

4. Broadcasting of entanglement using state-dependent B–H quantum cloning machine

In this section, our aim is to show that the broadcasting of inseparability using state-dependent
quantum cloning machine locally is more effective than using state-independent B–H quantum
cloning machine.

Let us consider a general pure entangled state

|χ〉AB = α1|00〉 + β1|11〉 + γ1|10〉 + δ1|01〉, (4.1)

where α1, β1, γ1, δ1 are real and α2
1 + β2

1 + γ 2
1 + δ2

1 = 1.
The first qubit (A) belongs to Alice and the second qubit (B) belongs to Bob. Then the two

distant partners Alice and Bob apply their respective state-dependent quantum cloner on their
qubits to produce two output systems A′ and B′, respectively. Now our task is to see whether
the local cloning procedure generates two pairs of entanglement from a given entangled pair.
Therefore, to investigate the existence of non-local correlations in two systems described
by the non-local density operators {(ρAB′ , ρA′B) or (ρAB, ρA′B′)}, we use Peres–Horodecki
criteria. Also, to test the separability of the local outputs described by the density operators
(ρAA′ , ρBB′ ), we use the same criteria as before.

The two non-local output states of a copier are described by the density operators ρAB′

and ρA′B:

ρAB′ = ρA′B = C11|00〉〈00| + C44|11〉〈11| + C22|01〉〈01| + C33|10〉〈10| + C23|00〉〈11|
+ C23|11〉〈00| + C12|01〉〈00| + C12|00〉〈01| + C13|00〉〈10| + C13|10〉〈00| + C14|01〉〈10|
+ C14|10〉〈01| + C24|01〉〈11| + C24|11〉〈01| + C34|11〉〈10| + C34|10〉〈11|, (4.2)
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where

C11 = α2
1(1 − λ)2 + β2

1λ2 + λ(1 − λ)
(
δ2

1 + γ 2
1

)
, (4.3a)

C12 = β1γ1λµ + δ1α1µ(1 − λ), C13 = β1δ1λµ + α1γ1µ(1 − λ), C14 = µ2δ1γ1,

(4.3b)

C22 = δ2
1(1 − λ)2 + γ 2

1 λ2 + λ(1 − λ)
(
α2

1 + β2
1

)
, (4.3c)

C23 = C32 = µ2α1β1, C24 = α1γ1λµ + β1δ1µ(1 − λ), (4.3d)

C33 = γ 2
1 (1 − λ)2 + δ2

1λ
2 + λ(1 − λ)

(
α2

1 + β2
1

)
, C34 = δ1α1µλ + β1γ1µ(1 − λ), (4.3e)

C44 = α2
1λ

2 + β2
1 (1 − λ)2 + λ(1 − λ)

(
δ2

1 + γ 2
1

)
. (4.3f )

The two local output states of a copier are described by the density operators ρAA′ and ρBB′ :

ρAA′ = K11|00〉〈00| + K44|11〉〈11| + K22|01〉〈01| + K33|10〉〈10| + K14|01〉〈10|
+ K41|10〉〈01| + K12|01〉〈00| + K12|00〉〈01| + K13|00〉〈10| + K13|10〉〈00|
+ K24|01〉〈11| + K24|11〉〈01| + K34|11〉〈10| + K34|10〉〈11|, (4.4)

where

K11 = (1 − 2λ)(α1 + δ1)
2, (4.5a)

K12 = K13 = K24 = K34 =
(µ

2

)
(α1 + δ1)(β1 + γ1), (4.5b)

K14 = K41 = K22 = K33 = λ + 2λ(β1γ1 + δ1α1), (4.5c)

K23 = K32 = 0,K44 = (1 − 2λ)(β1 + γ1)
2, (4.5d)

ρBB′ = K ′
11|00〉〈00| + K ′

44|11〉〈11| + K ′
22|01〉〈01| + K ′

33|10〉〈10| + K ′
14|01〉〈10|

+ K ′
41|10〉〈01| + K ′

12|01〉〈00| + K ′
12|00〉〈01| + K ′

31|00〉〈10| + K ′
31|10〉〈00|

+ K ′
42|01〉〈11| + K ′

42|11〉〈01| + K ′
34|11〉〈10| + K ′

34|10〉〈11|, (4.6)

where

K ′
11 = (1 − 2λ) (α1 + γ1)

2 , (4.6a)

K ′
12 = K ′

31 = K ′
42 = K ′

34 =
(µ

2

)
(α1 + γ1) (β1 + δ1), (4.6b)

K ′
14 = K ′

41 = K ′
22 = K ′

33 = λ + 2λ(α1γ1 + δ1β1), (4.6c)

K ′
23 = K ′

32 = 0, K ′
44 = (1 − 2λ)(β1 + δ1)

2. (4.6d)

The composite systems described by the density operators ρAB′ and ρA′B are inseparable if at
least one of the determinants W3 and W4 is negative and W2 is non-negative, where

W3 =
∣∣∣∣∣∣
C11 C12 C13

C12 C22 C23

C13 C23 C33

∣∣∣∣∣∣ , W4 =

∣∣∣∣∣∣∣∣

C11 C12 C13 C14

C12 C22 C23 C24

C13 C23 C33 C34

C14 C24 C34 C44

∣∣∣∣∣∣∣∣
, W2 =

∣∣∣∣C11 C12

C12 C22

∣∣∣∣ .

(4.7)

The entries in the determinants are given by equations (4.3a)–(4.3f ).
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The local output state in Alice’s Hilbert space described by the density operator ρAA′ is
separable if

W3 =
∣∣∣∣∣∣
K11 K12 K13

K12 K22 K23

K13 K32 K33

∣∣∣∣∣∣ � 0, W4 =

∣∣∣∣∣∣∣∣

K11 K12 K13 K14

K12 K22 K23 K24

K13 K32 K33 K34

K41 K24 K34 K44

∣∣∣∣∣∣∣∣
� 0,

W2 =
∣∣∣∣K11 K12

K12 K22

∣∣∣∣ � 0. (4.8)

The entries in the determinants are given by equations (4.5a)–(4.5d).
The local output state in Bob’s Hilbert space described by the density operator ρBB′ is

separable if

W3 =

∣∣∣∣∣∣∣∣

K ′
11 K ′

12 K ′
31

K ′
12 K ′

22 K ′
23

K ′
31 K ′

32 K ′
33

∣∣∣∣∣∣∣∣
� 0, W4 =

∣∣∣∣∣∣∣∣∣∣

K ′
11 K ′

12 K ′
31 K ′

14

K ′
12 K ′

22 K ′
23 K ′

42

K ′
31 K ′

32 K ′
33 K ′

34

K ′
41 K ′

42 K ′
34 K ′

44

∣∣∣∣∣∣∣∣∣∣
� 0,

W2 =
∣∣∣∣∣
K ′

11 K ′
12

K ′
12 K ′

22

∣∣∣∣∣ � 0. (4.9)

The entries in the determinants are given by equations (4.6a)–(4.6d).
Now we say that the broadcasting is possible for general pure entangled state (4.1) if

equations (4.7)–(4.9) are satisfied.
For simplicity and without any loss of generality, we assume that the two distant parties

Alice and Bob share a pair of particles prepared in the pure entangled state:

|χ〉 = α1|00〉AB + β1|11〉AB, (4.10)

where α1 is real and β1 is a complex number such that α2
1 + |β1|2 = 1.

Alice and Bob then apply the state-dependent quantum cloner as a local copier on their
qubits. As a result, the two non-local output states of a copier are described by the density
operators ρAB′ and ρA′B and two local output states are described by the density operators ρAA′

and ρBB′ .
The non-local density operators ρAB′ and ρA′B are given by

ρAB′ = ρA′B = |00〉〈00|[α2
1(1 − 2λ) + λ2

]
+ λ(1 − λ)(|01〉〈01| + |10〉〈10|)

+ |11〉〈11|[|β1|2(1 − 2λ) + λ2] + α1β
∗
1 µ2|00〉〈11| + α1β1µ

2|11〉〈00|. (4.11)

It follows from the Peres–Horodecki theorem that ρAB′ and ρA′B are inseparable if

W4 =

∣∣∣∣∣∣∣∣

(1 − 2λ)α2
1 0 0 0

0 λ(1 − λ) α1β
∗
1 µ2 0

0 α1β1µ
2 λ(1 − λ) 0

0 0 0 |β1|2(1 − 2λ) + λ2

∣∣∣∣∣∣∣∣
< 0

⇒ α4
1µ

4 − α2
1µ

4 + λ2(1 − λ)2 < 0

⇒ 1/2 − (
√

µ4 − 4λ2(1 − λ)2/2µ2) < α2
1 < 1/2 + (

√
µ4 − 4λ2(1 − λ)2/2µ2)

⇒ 1/2 − (
√

(1 − 2λ)4 − 4λ2(1 − λ)2/2(1 − 2λ)2) < α2
1 < 1/2

+ (
√

(1 − 2λ)4 − 4λ2(1 − λ)2/2(1 − 2λ)2).

Also we note that W3 < 0 and W2 � 0.
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Table 2. Intervals representing the separability and inseparability between two systems.

Machine Interval (I1) for inseparability between Interval (I2) for separability between Common interval
parameter, λ systems (A–B′) and (A′–B) systems (A–A′) and (B–B′) between (I1) and (I2)

0.007 (0.000 05, 0.999 94) (0.000 05, 0.999 94) (0.000 05, 0.999 94)

0.029 (0.001 01, 0.998 99) (0.000 94, 0.999 05) (0.001 01, 0.998 99)

0.061 (0.005 55, 0.994 44) (0.004 85, 0.995 14) (0.005 55, 0.994 44)

0.101 (0.020 76, 0.979 23) (0.016 28, 0.983 71) (0.020 76, 0.979 23)

0.115 (0.030 38, 0.969 61) (0.022 82, 0.977 17) (0.030 38, 0.969 61)

0.141 (0.058 63, 0.941 36) (0.040 17, 0.959 82) (0.058 63, 0.941 36)

0.159 (0.090 91, 0.090 98) (0.057 68, 0.942 31) (0.090 91, 0.090 98)

0.173 (0.128 36, 0.871 63) (0.075 70, 0.924 29) (0.128 36, 0.871 63)

0.187 (0.184 58, 0.815 41) (0.099 04, 0.900 95) (0.184 58, 0.815 41)

The local density operators ρAA′ and ρBB′ are given by

ρAA′ = ρBB′ = |00〉〈00|α2
1(1 − 2λ) + λ(|01〉〈01| + |10〉〈10| + |01〉〈10| + |10〉〈01|)

+|11〉〈11||β1|2(1 − 2λ). (4.12)

Now ρAA′ and ρBB′ are separable if W2 � 0, W3 � 0 and W4 � 0.

W4 =

∣∣∣∣∣∣∣∣

(1 − 2λ)α2
1 0 0 λ

0 λ 0 0
0 0 λ 0
λ 0 0 (1 − 2λ)|β1|2

∣∣∣∣∣∣∣∣
� 0

⇒ α4
1(1 − 2λ)2 − α2

1(1 − 2λ)2 + λ2 � 0

⇒ 1/2 − √
1 − 4λ/2(1 − 2λ) � α2

1 � 1/2 +
√

1 − 4λ/2(1 − 2λ). (4.13)

Table 2 shows the interval for probability α2
1 for broadcasting of entanglement using state-

dependent quantum-cloning machine. Also we note from the above table that for the last two
cases, the length of the intervals for broadcasting via state-dependent cloner is smaller than the
length of the interval for broadcasting discussed by Buzek et al while the situation is opposite
in the remaining cases.

Now to see how well the local state-dependent quantum cloners produce two entangled
pairs from a single pair, we have to calculate the amount of overlapping between the input
entangled state and the output entangled state described by the density operator ρAB′(ρA′B).

Thus, the fidelity of broadcasting of inseparability is given by

F
(
α2

1

) = 〈χ |ρAB′ |χ〉 = (1 − λ)2 − 4α2
1

(
1 − α2

1

)
λ(1 − 2λ). (4.14)

The average fidelity is

F̄ =
∫ 1

0
F

(
α2

1

)
dα2

1 = (7λ2 − 8λ + 3)/3. (4.15)

Now we are in a position to compare the techniques for broadcasting of entanglement using
state-dependent and state-independent cloners.

(i) In the first technique, Buzek et al used state-independent cloner as a local copier but
in the present technique, we use state-dependent cloner as a local copying machine for
broadcasting entanglement.

(ii) In the first technique where state-independent quantum cloner was used, the broadcasting
is possible in the interval (0.109 68, 0.890 31) for α2

1 while in the second technique where
state-dependent quantum cloning machine is used as a local copier for broadcasting, the
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 0.00005       0.00101       0.10968                                      0.89031        0.99994         0.99899            1 

                I1 

  I2

I3      

 0   

Figure 1. Pictorial comparison between the intervals for inseparability between two systems,
obtained from B–H state dependent and independent cloner.

interval for the probability α2
1 depends on the machine parameter λ. Furthermore, we

find that when the machine parameter takes the value lying in the interval (0, 0.159], the
interval for α2

1 in the second technique is much wider than the interval for α2
1 in the first

technique. The situation becomes opposite when the value of the machine parameter λ lies
in the interval [0.166, 0.5); i.e. in this case, the first technique dominates over the second.
Table 2 supports the validity of the above statement. Therefore, we can observe that there
exists some state-dependent cloner with which the entanglement can be broadcasted with
a wider range than the broadcasting entanglement using state-independent cloner.

Figure 1 shows some intervals for inseparability between systems (A–B′) and (A′–B)
to compare our technique with Buzek et al techniques for broadcasting entanglement.
‘I1’ represents the interval for inseparability between systems when optimal universal
quantum cloning machine is used as a local copier while ‘I2’ and ‘I3’ represent the interval
for inseparability between systems when state-dependent quantum cloning machine is
used as a local copier.

(iii) The average fidelity of copying an entanglement is greater when using state-dependent
quantum cloner than the average fidelity of copying an entanglement using state-
independent cloner when

(7λ2 − 8λ + 3)

3
>

67

108
⇒ 0 < λ < 0.167 or 0.976 < λ < 1. (4.16)

We reject 0.976 < λ < 1, since the machine parameter λ lies between 0 and 1
2 .

Therefore, from table 2 we observe that there exist values of λ for which both broadcasting of
entanglement and average fidelity of copying can be performed better.

In summary, we have constructed a state-dependent quantum cloning machine using B–H
cloning transformation by relaxing one of the universality conditions. Then we studied state-
dependent quantum-cloning machine with different machine parameter λ and the results are
given in table 1. Also we generalize the qubit states in the form α1|00〉+β1|11〉+γ1|10〉+δ1|01〉
and then studied the broadcasting of entanglement of the generalized pure state using the newly
constructed local state-dependent quantum cloning machine. We also give the interval of the
broadcasting of entanglement for different machine parameter λ and these results are shown
in table 2. Next, we consider a specific pure state of the form α1|00〉 + β1|11〉, which is
also taken by Buzek et al, and then compare the two methods (using state-dependent and
state-independent quantum cloning machines) for broadcasting of entanglement of the given
pure entangled state. Next we have shown that the broadcasting of entanglement using
state-dependent quantum cloning machine has many advantages over the partial cloning of
entanglement using state-independent B–H quantum cloning machine.

The advantages are: (i) the length of the interval for α2 is broader in the case of
broadcasting of inseparability using state-dependent quantum cloning machine.

(ii) We get the better quality of copy on average of an entangled pair when we use
state-dependent quantum cloner than using state-independent cloner locally.
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